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Abstract

Nonstandard analysis is an area of modern mathematics which

studies abstract number systems containing both infinitesimal and

infinite numbers. This article applies nonstandard analysis to de-

rive jump conditions for one-dimensional, converging shock waves in a

compressible, inviscid, perfect gas. It is assumed that the shock thick-

ness occurs on an infinitesimal interval and the jump functions in the

thermodynamic and fluid dynamic parameters occur smoothly across
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this interval. Predistributions of the Heaviside function and the Dirac

delta measure are introduced to model the flow parameters across a

shock wave. The equations of motion expressed in nonconservative

form are then applied to derive unambiguous relationships between

the jump functions for the flow parameters.

1 Introduction

Currently, no known mathematical theory provides a general framework to

study all the partial differential equations of mathematical physics. The lack

of such a comprehensive theory means that each type of physical problem,

and hence, each type of equation, requires a different analytical or numerical

technique for its solution. Functional analysis has been applied to develop

powerful techniques for analyzing and constructing generalized solutions to

families of linear partial differential equations. However, the methods of

functional analysis are limited in studying nonlinear partial differential equa-

tions, because such techniques are based on linear mathematical structures.

Since linear mathematical structures do not describe the simplest nonlin-

earity (multiplication), it is not surprising that functional analysis has not

yielded a comprehensive framework for studying generalized solutions of par-
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tial differential equations.

Many approaches have been used to attempt to define a useful multiplica-

tion operation on spaces of functionals applied in linear analysis to study dif-

ferential equations. The motivation for multiplying functionals comes from a

plethora of applications that occur in modeling physical problems: construc-

tion of generalized solutions of certain partial differential equations requires

the multiplication of linear functionals. However, a fundamental theorem of

Schwartz [1] shows that the standard algebraic product cannot be defined

consistently in spaces of functionals, such as the distributions or generalized

functions; all such methods will produce ambiguous results leading to log-

ical and arithmetical contradictions. Because standard multiplication does

not produce meaningful results, any product of generalized functions defined

must be weaker than standard multiplication.

Over the last thirty years, E.E. Rosinger [2 - 6] and J.F. Colombeau [7,

8], working independently, have developed a theoretical framework for quo-

tient algebras of generalized functions to analyze nonlinear partial differential

equations. Their approach extends classical linear mathematics to nonlinear

mathematics by defining multiplication on sets of generalized functions by

embedding these linear spaces into abstract algebras of nonlinear generalized
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functions with weak operations of multiplication. The potential applica-

tion of a theory of nonlinear generalized functions enabling the analysis and

approximation of solutions to nonlinear partial differential equations is enor-

mous; such a theory could impact almost all areas of science and technology.

Although it is probable that the existing theories of quotient algebras of

generalized functions will yield important insights into the analysis and com-

putation of certain classes of nonlinear field equations, significant limitations

of these theories are known. Because any logically consistent operation of

multiplication of generalized functions must be much weaker than the clas-

sical multiplication of numbers and functions, such a product of generalized

functions will always yield large collections of abstract objects representing

weak solutions of the problem under investigation. Basically problems with

no classical weak solutions, such as the product, δ · H, are converted into

problems with uncountably many generalized solutions. The fundamental

question then becomes how to determine a physically observed weak solu-

tion from an infinitude of possible weak solutions.

To approximate solutions, Colombeau (see References [7, 8]) constructed

an explicit theory of nonlinear generalized functions. This theory has been

applied to analyze and compute solutions to nonlinear partial differential
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equations. The logic of solving a differential equation in a space of Colombeau

generalized functions follows the standard approach of functional analysis:

a method is established for generating sequences to approximate solutions

within a collection of nonlinear generalized functions and then a compactness-

type argument is applied to show that the approximating sequences actually

converge to limits within the space of approximating objects. A resulting

limit then represents a solution to the equation. A key difficulty in applying

a space of Colombeau generalized functions is determining a specific represen-

tation for the products of generalized functions occurring in the differential

equation. As Colombeau [9] and his coworkers [10, 11] have shown, differ-

ent physical problems require different distinct representations for a product

of generalized functions such as δ ·H. The representation of the product is

found by adding more information about the problem. Roughly speaking, the

solution of a concrete problem via nonlinear generalized functions requires:

the equations modeling the physics, the initial-boundary values, and the ad-

ditional problem-specific physical information required to fix the product of

generalized functions. For example, in continuum shock wave problems, the

additional information is obtained by requiring the product of generalized

functions to satisfy the standard shock wave jump conditions.
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A number of authors, including, Oberguggenberger and Todorov [12], and

Hoskins and Sousa Pinto [13], have shown that versions of the Colombeau al-

gebras of nonlinear generalized functions may be constructed using nonstan-

dard analysis. Nonstandard analysis is a relatively new area of mathematics,

which emerged from basic research in mathematical logic. The subject was

discovered in the early 1960s by A. Robinson [14]. The main contribution

of nonstandard analysis to mathematics is the extension of the real numbers

R to the hyperreal numbers ∗R that contain infinitely small (infinitesimals)

and infinitely large numbers. The infinitesimals in a hyperreal number sys-

tem have the algebraic properties of standard numbers, which justifies the

formal manipulations of infinitesimals that engineers and physicists often

use. Moreover, the existence of distinct, infinitely large numbers that can

be manipulated and used like finite numbers to solve problems provides a

powerful new tool for applications. Nonstandard methods may be used to

construct algebras of nonlinear generalized functions, or nonstandard analy-

sis may be used directly to study specific problems involving multiplication

of generalized functions. The second approach is considered here.

In this article, jump conditions are derived using nonstandard analysis for

one-dimensional converging shock waves in a compressible, inviscid, perfect
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gas. A class of nonstandard Heaviside functions is applied to model the

microstructure of the shock wave jump. The term microstructure refers to the

distinct functions, which represent the flow variables such as specific volume,

pressure, and velocity across a shock wave. A shock wave is governed by the

standard conservation equations written in primitive form. A shock jump

is then modeled to occur over an infinitesimal interval with nonstandard

jump functions. The nonstandard jump functions applied in the subsequent

analysis are defined as follows: for a standard jump function φ(x) with jump

[φ] ≡ φr − φl at x = 0, define a nonstandard jump function by

∗φ(x) ≡ φl + [φ]∗H(x), (1)

where ∗H(x) is a piecewise differentiable, nonstandard Heaviside function.

Following Colombeau [9], each flow parameter is assumed to have a distinct

nonstandard jump function associated with it at the shock. This means that

each flow variable may have a different nonstandard Heaviside function or

microstructure across a shock wave.

It is shown that if the various Heaviside functions for the flow param-

eters have their jumps located on the same infinitesimal interval, then the
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governing equations expressed in nonconservative form yield the relations

between these Heaviside functions unambiguously. Strictly speaking, the

mathematics of the product of nonstandard generalized functions is unam-

biguous; therefore, the use of nonstandard Heaviside functions removes some

of the mathematical difficulties associated with products such as δ ·H.

The present work was motivated by the authors’ interest (see Baty et al.,

[15, 16]) in understanding how to add physical information to specify prod-

ucts of generalized functions contained in differential equations with model

problems with well-defined regions of solution discontinuity. Nonstandard

analysis is applied to build explicit examples of the infinitesimal microstruc-

ture for converging shock waves. If the existence of the nonstandard Heav-

iside functions is assumed, the present development greatly simplifies the

analysis and manipulation of products of generalized functions.

2 Nonstandard Generalized Functions

Nonstandard analysis studies the extension of number systems and function

spaces to quotient spaces, which contain idealized elements that are infinitely

large and infinitely small. For example, the real numbers, R, may be ex-
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tended to a hyperreal number system ∗R that is defined as a quotient space

resulting from applying an equivalence relation ∼ on the set of sequences of

real numbers, Rs, indexed by the natural numbers N

∗R ≡ Rs/ ∼ . (2)

The equivalence relation ∼ is defined by selecting an ultrafilter on N . A

resulting nonstandard set ∗R may be shown to be a linearly ordered field.

The role of the equivalence relation in Equation (2) is to add the idealized

elements.

For the present analysis, let S denote the real numbers or a set of functions

such as the space of locally integrable functions, Lloc(R). Let SR+ be the

set of nets (fε) in S with parameter ε ∈ R+. The nonstandard extension

of S will then be defined to be the quotient space ∗S ≡ SR+/ ∼ for a

fixed equivalence relation. The use of nets provides a generalization of the

definition of Equation (2). Further details of nonstandard extensions are

available in many textbooks, articles and proceedings; for example see Hurd

and Loeb [17] and Arkeryd, et al. [18].
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2.1 Predistributions of Generalized Functions

In the early development of nonstandard analysis, hyperreal techniques were

applied to generalized functions, Robinson [14], with application to quantum

theory, Kelemen and Robinson [19]. Robinson noticed that any regularizing

sequence of smooth functions used to represent the Dirac delta measure could

be replaced by a single function with hyperreal parameters. A nonstandard

Dirac delta measure results for any standard function g that satisfies

∫ ∞

−∞
g(x)dx = 1, (3)

by defining the internal function,

∗δ(x) = Ωg(Ωx), (4)

where Ω is any infinite hyperreal number. To see how the internal function

(4) acts like the delta measure, perform the integration

∫ ∞

−∞
Ωg(Ωx)∗φ(x)dx ≈ ∗φ(0)

∫ ε

−ε

Ωg(Ωx)dx ≈ φ(0), (5)
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where ε = ε(Ω) is an infinitesimal constant depending on Ω, φ ∈ D(R) is

an arbitrary standard test function, and the equivalence relation ≈ means

infinitesimally close. The result follows by taking the standard part of Equa-

tion (5).

The power of the linear theory of generalized functions comes from the

fact that many distinct regularizing sequences of functions may be applied to

produce unique functionals, such as the delta measure. It is well known that

the standard theory of generalized functions may be extended to a nonstan-

dard theory of generalized functions, Laugwitz [20], Richter [21] and Todorov

and Vernaeve [22]. In standard constructions, the delta measure results from

abstract limits of regularizing sequences; on the other hand, in nonstandard

constructions, the functional whose standard part produces the same result

as the delta measure can be represented by uncountably many internal hy-

perreal functions with distinct microstructures. These internal functions are

called predistributions and are defined here for the space of locally integrable

functions ∗Lloc(R). A function f ∈ ∗Lloc(R) is a called a predistribution if

for each n ∈ N0 it satisfies the following: i) f (n) is piecewise differentiable, ii)

f (n) ∈ ∗Lloc(R), and iii) there exists a generalized function T ∈ D′(R) such

11



that
∫ ∞

−∞
f (n)(x)∗φ(x)dx ≈ (−1)n〈T, φ(n)〉, (6)

for all test functions φ ∈ D(R) and all n ∈ N0.

The analysis of shock wave jump conditions also requires the use of non-

standard Heaviside functions. Like the Dirac delta measure, the standard

Heaviside function can be represented by uncountably many functions with

distinct microstructures (predistributions of the Heaviside function). To in-

troduce a predistribution of the Heaviside function, let ε1 and ε2 be two

infinitesimal numbers, at least one of which is not zero, ε1 ≈ ε2 and ε1 < ε2.

An internal Heaviside function ∗H(x) is defined as follows:

∗H(x) =





0 if x ≤ ε1

∗h(x) if ε1 < x < ε2

1 if x ≥ ε2

. (7)

In Equation (7) ∗h(x) is assumed to be a piecewise differentiable function

contained in ∗Lloc(R), not necessarily monotonically increasing, which sat-

isfies

∗h(ε1) ≈ 0 and ∗h(ε2) ≈ 1. (8)
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As an example, the following function can be used for ∗h(x) when x is in the

open infinitesimal interval (0, ε):

∗h(x) = 1− exp(−Ωx), (9)

where Ω is any infinite hyperreal and ε = ε(Ω) is any infinitesimal hyperreal

such that Ωε is an infinite hyperreal. Combining Equations (7) and (9) yields

the nonstandard Heaviside function

∗H(x) =





0 if x ≤ 0

1− exp(−Ωx) if 0 < x < ε

1 if x ≥ ε

. (10)

Notice that ∗H(x) is a differentiable function on (0, ε) and that the deriva-

tive is the internal function

∗H ′(x) =





0 if x ≤ 0

Ω exp(−Ωx) if 0 < x < ε

0 if x ≥ ε

, (11)
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which is a predistribution for the Dirac delta. For all standard test functions

φ ∈ D(R) it may be shown that

∫ ∞

−∞
∗H ′(x)

∗
φ(x)dx ≈ φ(0), (12)

following Equation (5). For more detail about nonstandard Heaviside func-

tions and their properties see Baty et al. [16].

2.2 Products of Generalized Functions

The Schwartz theorem showing that generalized functions cannot be multi-

plied is a manifestation of a basic structural limitation of algebraic mathe-

matics. Following Rosinger [5], consider a mathematical structure (F , ·,D)

consisting of a collection F of functions defined on R that may exhibit a

finite number of localized discontinuities. The standard Heaviside function

H(x) =





0 if x < 0

1 if x > 0

, (13)

is contained in F . Let · and D denote the standard multiplication and

differentiation operators acting on the set F .
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From Equation (13) it follows that

Hm(x) = (H ·H ·H · . . . ·H)(x) = H(x), (14)

for all m > 1. Then applying the derivative operator in the sense of general-

ized functions to Equation (14) yields

mHm−1(x)DH(x) = DH(x), (15)

which implies that

mHm−1(x) = 1 and so Hm−1(x) =
1

m
, (16)

for all m > 1. But Equation (16) contradicts the definition of the standard

Heaviside function (13). This contradiction occurs because the Heaviside

function has a jump at x = 0. Rosinger has shown that the mathemati-

cal structure (F , ·,D) is over-specified and discontinuity, multiplication and

differentiation cannot be combined in the steps of a single derivation. The
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over-specification of (F , ·,D) may be repaired by requiring that

H2(x) = (H ·H)(x) 6= H(x). (17)

From the definition of the nonstandard Heaviside function, Equation (7),

it follows that

∗H2(x) =





0 if x ≤ ε1

∗h2(x) if ε1 < x < ε2

1 if x ≥ ε2

, (18)

which implies that

∗H2(x) 6= ∗H(x) (19)

because ∗h2(x) 6= ∗h(x) for ε1 < x < ε2. That is, giving the Heaviside

function ∗H(x) an infinitesimal microstructure removes the over-specification

which leads to the contradiction of Equation (16). Equation (19) generalizes

for all differentiable nonstandard Heaviside functions to the result that

∗Hm(x) 6= ∗H(x) (20)

for all m > 1, removing the contradictions obtained by Equation (14). Also
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notice, that differentiating Equation (18) yields

∗H(x)∗H ′(x) =





0 if x ≤ ε1

∗h(x)∗h′(x) if ε1 < x < ε2

0 if x ≥ ε2

. (21)

As an example of a product of generalized functions, consider δ ·H. The

multiplication of the delta measure with the Heaviside function occurs in the

analysis and computation of shock waves if the governing equations of motion

are written in nonconservative form; δ ·H comes from the nonlinear terms,

such as the convective acceleration term uux, for a discontinuity in the field

variable, u. In the standard theory of generalized functions, the product δ ·H

does not yield a well-defined functional, because the results depend on the

representations of δ and H. To see this behavior, choose the predistributions

of Equation (10) and

∗δ(x) =
Ω

π
· sech(Ωx), (22)

for the Heaviside function and Dirac delta respectively. Now, consider the
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functional acting on any standard test function φ ∈ D(R)

∫ ∞

−∞
∗δ(x)∗H(x)∗φ(x)dx =

∫ ∞

0

Ω

π
sech(Ωx)(1− exp(−Ωx))∗φ(x)dx. (23)

Integrating Equation (23) then gives

∫ ∞

0

Ω

π
sech(Ωx)(1− exp(−Ωx))∗φ(x)dx ≈ φ(0)

{
1

2
− ln 2

π

}
. (24)

If other predistributions are selected for δ and H, the numerical value mul-

tiplying φ(0) in Equation (24) will, in general, be different.

In the numerical approximation of shock problems, the use of noncon-

servative forms of the equations of motion produce shock wave speeds that

depend on the numerical scheme and not the physics of shock propagation.

Nonconservative numerical simulations of one-dimensional shock problems

are analogous to the result of Equation (24): the specific numerical values

are fixed by the choice of the approximations for δ and H.

Next, consider the product δ ·H, but now assume δ = H ′. Then for any

predistribution representing the delta measure, H ′ defined on the interval

(−ε, ε), choose hyperreal numbers Ω, ε = ε(Ω) so that Ω is infinite, ε is

infinitesimal and Ωε is an infinite hyperreal. Then for any standard test
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function φ ∈ D(R), the nonstandard functional equation for δ ·H implies

∫ ∞

−∞
∗δ(x)∗H(x)∗φ(x)dx =

∫ ∞

−∞
∗H ′(x)∗H(x)∗φ(x)dx, (25)

and
∫ ∞

−∞
∗δ(x)∗H(x)∗φ(x)dx ≈ 1

2
φ(0), (26)

independent of the order of the operations used to evaluate the integral.

Equation (26) is consistent with the results obtained by the standard

theory of generalized functions. This special case of the product δ · H may

be computed using only the function H and multiplication and is not over-

specified, since δ ·H is not differentiated. The differentiation of the Heaviside

function is avoided by applying integration by parts. To this end, consider

the standard version of Equation (25)

∫ ∞

−∞
δ(x)H(x)φ(x)dx =

∫ ∞

−∞

d

dx

(
1

2
H(x)

)
φ(x)dx, (27)

which assumes that H(x) = H2(x). Equation (27) then yields

∫ ∞

−∞

d

dx

(
1

2
H(x)

)
φ(x)dx = −1

2

∫ ∞

0

d

dx
φ(x)dx =

1

2
φ(0), (28)
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producing the same result as the standard part of Equation (26). This exam-

ple is analogous to integrating the governing equations of motion modeling

shock wave propagation in conservative form: the predicted shock wave speed

will be independent of the numerical approximation. Notice that the stan-

dard calculation performed in Equations (27) and (28) depends on the order

of the algebraic and analytical steps. Changing the order of the operations

can produce an over-specified problem with ambiguous results. On the other

hand, the nonstandard result of Equation (26) is independent of the order of

operations.

3 Shock Wave Jump Conditions

3.1 Equations of Motion

The equations governing the motion of a one-dimensional, compressible, in-

viscid gas are given by

(ln ρ)t + u(ln ρ)r + ur +
κu

r
= 0, (29)

ut + uur + νpr = 0, (30)
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et + uer + νp(ur +
κu

r
) = 0, (31)

where ν is the specific volume, ρ is the density (≡ 1
ν
), u is the velocity, p is the

pressure, and e is the specific energy. The notation for partial differentiation

is simplified to the subscript notation ξr ≡ ∂ξ
∂r

. Here κ = 0, 1, 2 represents

Cartesian, cylindrical and spherical coordinate systems, respectively. The

conservation of mass, momentum and energy Equations (29), (30), and (31),

represent three equations in terms of four physical variables. To close the

system of equations two equations of state must be added. The equations

of state relate the thermodynamic variables ρ, p, e, and T . Assuming a

calorically perfect gas, the energy equation may be shown to be

1

γ − 1
[(pν)t + u(pν)r] + νp(ur +

κu

r
) = 0, (32)

where γ is the ratio of specific heats. Developments of Equations (29), (30),

and (32) and discussions of the equations of state may be found in Zel’dovich

and Raizer [23] and Thompson [24].
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3.2 Jump Conditions for Normal Shock Waves

To motivate the physical assumptions used to derive jump conditions for

converging shock waves, consider the motion of a normal shock wave (κ = 0)

propagating through a perfect gas. On either side of the shock wave the

specific volume ν, velocity u, and pressure p of the flow are assumed to be

constant. Since the values of the field variables are assumed constant on

either side of the shock wave, the shock wave does not accelerate and the

shock speed c is constant. Therefore, the characteristics for the shock wave

are straight lines in the space-time domain. Along the characteristic lines

the governing equations reduce to ordinary differential equations, so the field

variables, ν, u, and p, may be assumed to have the following form across the

shock wave

ν(ξ) = νl + [ν]H(ξ), (33)

u(ξ) = ul + [u]K(ξ), (34)

p(ξ) = pl + [p]L(ξ), (35)

where ξ = x + ct is a characteristic line, c is the shock speed, and where

[φ] = φr−φl, with the subscripts r and l referring to the right (downstream)
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and left (upstream) conditions across the shock, respectively. The functions

H, K, and L are assumed to be predistributions of the Heaviside function

as defined in Section 2.1. (Here and in the following development the *-

notation is suppressed.) For an arbitrary fixed infinitesimal ε, each one of

these Heaviside functions is taken to have its jump contained on the same

arbitrary infinitesimal interval (0, ε).

Now, substituting the jump functions (33), (34), and (35) into the equa-

tions of motion (29), (30), and (32) yields

ũ[ν]H ′ − ν[u]K ′ = 0, (36)

ũ[u]K ′ + ν[p]L′ = 0, (37)

αũ(p[ν]H ′ + ν[p]L′) + νp[u]K ′ = 0, (38)

where

ũ = (ul + c) + [u]K and α =
1

γ − 1
. (39)

Recasting Equations (36), (37), and (38) as a first-order system of ODEs
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generates the formal equation




[ν]ũ −[u]ν 0

0 [u]ũ [p]ν

α[ν]pũ [u]pν α[p]ũν







H

K

L




′

=




0

0

0




, (40)

for the jump functions defining ν, u, and p.

A nontrivial family of ODEs may be found by specifying the nonstan-

dard Heaviside functions H ′, K ′, and L′ if the determinant of the matrix of

Equation (40) vanishes. The determinant of the matrix of Equation (40) is

zero ∣∣∣∣∣∣∣∣∣∣∣∣

[ν]ũ −[u]ν 0

0 [u]ũ [p]ν

α[ν]pũ [u]pν α[p]ũν

∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (41)

if

ũ2 = γpν. (42)

Equations (41) and (42) imply that a nontrivial algebraic solution exists

defining the ODEs specifying the nonstandard Heaviside functions for isen-

tropic flow. Since shock propagation is not an isentropic process, Equation

(40) will not be satisfied across a shock wave; therefore, Equation (40) is
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replaced by the under-determined system




[ν]ũ −[u]ν 0

0 [u]ũ [p]ν







H

K

L




′

=




0

0


 , (43)

together with the entropy defined by

s = cν ln(pνγ), (44)

on either side of the shock wave, Zel’dovich and Raizer [23], p 53.

The jump functions for ν, u, and p are then determined by integrating

matrix Equation (43) to determine the nonstandard Heaviside functions H,

K, and L on an infinitesimal interval, (0, ε), subject to boundary data




H(0)

K(0)

L(0)



≈




0

0

0




and




H(ε)

K(ε)

L(ε)



≈




1

1

1




. (45)

The boundary value problem defined by Equations (43) and (45) may

be integrated to produce unambiguous relationships between the Heaviside
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functions H, K, and L. To integrate H ′ and K ′, Equation (43) is rewritten

in terms of a nonsingular matrix and an unknown function depending on L′




[ν]ũ −[u]ν

0 [u]ũ







H

K




′

=




f(L′)

g(L′)


 , (46)

where 


f(L′)

g(L′)


 =




0

−[p]νL′


 . (47)

Equations (46) and (47) then imply




H

K




′

=
1

[ν][u]ũ2




[u]ũ [u]ν

0 [ν]ũ







0

−[p]νL′


 , (48)

where

H ′ = − [p]ν2

[ν]ũ2
L′, (49)

and

K ′ = − [p]ν

[u]ũ
L′. (50)
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Then combining Equations (49) and (50) yields

H ′ =
[u]ν

[ν]ũ
K ′. (51)

Integrating Equation (51) and applying the boundary conditions (45) shows

that

H ≈ K, (52)

with

νl[u]

[ν]ũl

= 1, (53)

where

ũl = ul + c. (54)

Combining Equations (52) and (53) with Equation (50) produces

K ′ = − [p][ν]

[u]2
L′. (55)

And integrating Equation (55) with the boundary conditions (45) yields

K ≈ L, (56)
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and

[u]2

[ν][p]
= −1. (57)

Finally, by combining Equations (52) and (56) it follows that the microstruc-

ture for the Heaviside functions for the specific volume, velocity, and pressure

jump conditions are coincident across an inviscid shock wave

H ≈ K ≈ L, (58)

for an arbitrary infinitesimal interval (0, ε). This result also holds if the

equivalence relation ≈ is replaced by = in Equations (45) and (58). The

result of Equation (58) (with =) has been derived by Colombeau and Le

Roux [10] using the theory of nonlinear generalized functions.

Equation (58) was derived by manipulating products of the functions, H,

K, and L and their derivatives. Because these functions satisfy (19), the

mathematical structure applied in the analysis is not over-specified and can

be used to derive the classical Rankine-Hugoniot jump conditions obtained

by analyzing the problem in divergent form. For example, an expression for
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the shock speed c follows from Equations (53) and (54), which yields

c =
1

[ν]
(νl[u]− ul[ν]). (59)

Equation (59) is the shock speed obtained from the equations of motion in

conservative form (which is the physically observed shock speed). A dis-

cussion of the standard one-dimensional shock jump conditions is given in

Chapter 1 of Gathers [25].

In case the relaxation phenomenon is important in the shock wave prop-

agation process, the infinitesimal length scale over which the jump in the

nonstandard Heaviside functions takes place should correspond to the phys-

ical length over which of the slowest energy state reaches equilibrium. The

physics of the relaxation phenomenon must be included in the differential

equations to determine the microstructure of the Heaviside functions.

3.3 Jump Conditions for Converging Shock Waves

In analogy with the normal shock wave analysis of Section 3.2, the governing

equations of motion are considered along characteristic curves in the space-

time domain. Along the characteristic curves the equations of motion reduce
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to ordinary differential equations. Following Zel’dovich and Raizer [23], the

flow variables are assumed of the form

p(ξ) = ρ0Ṙ
2π(ξ), ρ(ξ) = ρ0g(ξ), and u(ξ) = Ṙv(ξ), (60)

where the characteristic curves are defined by

ξ =
r

R
=

r

A(−t)α
. (61)

In Equations (60) and (61), R (≡ R(t)), the location of the shock wave, and

ρ0, the density in front of the shock wave, are the reference scales for the

similarity solution; while A and α are constants. The functions of Equations

(60) and (61) are defined on

−∞ < t ≤ 0, R ≤ r < ∞, and 1 ≤ ξ < ∞. (62)

The converging shock fronts are located at ξ = 1 and the shock speeds are

given by D ≡ Ṙ = αR/t.

Recalling that shock wave propagation is not an isentropic process, Equa-

tions (29) and (30) are used to define ODEs relating the density ρ, velocity
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u, and pressure p across converging shock waves. Because the resulting dif-

ferential equations will be under-determined, unique jump functions cannot

be found using these equations. However, the analysis will yield unambigu-

ous relationships between the jump functions for the flow parameters. And,

as in the case of the inviscid normal shock, if one of the jump functions is

specified, the other two jump functions can be determined.

Along the characteristic curves, the similarity solutions π, g, and v are

then assumed to be internal nonstandard jump functions across a shock front

g(ξ) = g0 + [g]G(ξ), (63)

v(ξ) = v0 + [v]K(ξ), (64)

π(ξ) = π0 + [π]L(ξ), (65)

In Equations (63), (64), and (65), each Heaviside predistribution is assumed

to have its jump contained on the same interval (1, 1+ ε), where ε is an arbi-

trary fixed infinitesimal. Here G, K, and L are assumed to be differentiable

on (1, 1 + ε), and G,K,L ∈ ∗Lloc(R) as in Section 2.1. On the end points of

the interval (1, 1 + ε) the nonstandard Heaviside functions are subject to the

31



boundary data




G(1)

K(1)

L(1)



≈




0

0

0




and




G(1 + ε)

K(1 + ε)

L(1 + ε)



≈




1

1

1




. (66)

Behind a converging shock front, the density ρ1, velocity u1, and pressure

p1, are assumed to take the limiting values for a strong shock

ρ1 = ρ0
γ + 1

γ − 1
, (67)

u1 =
2

γ + 1
D, (68)

and

p1 =
2

γ + 1
ρ0D

2, (69)

Thompson [24], p 495; where γ is the ratio of specific heats. Combining the

general functional form of the similarity solutions (60), with the nonstandard

jump functions (63) to (65), the Heaviside boundary data (66), and the

physical boundary data (67) to (69), yields the nonstandard jump function
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parameters

g0 = 1 and [g] =
γ + 1

γ − 1
− 1, (70)

v0 = 0 and [v] =
2

γ + 1
, (71)

and

π0 = 0 and [π] =
2

γ + 1
. (72)

Now to determine relationships between the nonstandard Heaviside func-

tions, G, K and L, the equations of conservation of mass and momentum

must be integrated. To this end, substituting Equations (60) into (29) and

(30) produces the system of ODEs




[v] 0

0 [π]







K

L




′

=




f(G)

g(G)


 , (73)

where 


f(G)

g(G)


 =




ξ(ln g)′ − (κ/ξ + (ln g)′)v

−g([(α− 1)/α]v + (v − ξ)v′)


 . (74)

The system of Equations (73) have assumed that combinations of R, ρ and

their time derivatives are functions of the constant α. Details of the deriva-

tion of these equations and the scale factor identities are given in Chapter
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XII of Zel’dovich and Razier [23].

The first Equation of (73) may be integrated to solve for either g or v.

Since this equation forms a linear ODE in terms g,

dv

dξ
+ (

κ

ξ
+ (ln g)′)v = ξ(ln g)′, (75)

where (·)′ ≡ d
dξ

, v is determined as a function g. Integrating Equation (74)

on the interval (1, 1 + ε) yields

v(ξ) =
1

ξκg(ξ)

[
ξκ+1g(ξ)− 1− (κ + 1)

∫ ξ

1

τκg(τ)dτ

]
. (76)

To show that Equation (76) gives a jump function, it must be demon-

strated that it satisfies the boundary conditions of Equations (66) and (71).

From experimental shock data, g is assumed to be strictly monotonically

increasing on the interval (1, 1 + ε); with this assumption the integral in

Equation (76) satisfies

0 < (κ + 1)

∫ ξ

1

τκg(τ)dτ ≤ (κ + 1)g(1 + ε)

∫ ξ

1

τκdτ . (77)
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But recalling that

(1 + ε)k ≈ 1 for k > 0, (78)

implies that

0 < (κ + 1)

∫ ξ

1

τκg(τ)dτ ≤ ω, (79)

where ω is an infinitesimal. Equations (76) and (79) then yield

v(ξ) ≈ 1

ξκg(ξ)

[
ξκ+1g(ξ)− 1

]
. (80)

and

v(1 + ε) ≈ 2

γ + 1
, (81)

so together with v(1) ≈ 0, it follows from Equation (64) that v is a nonstan-

dard jump function. Equation (80) is the homogeneous part of the solution

of Equation (75), which implies that the nonhomogeneous term generates

an infinitesimal contribution to the velocity jump function across the shock

wave.

Next, the second Equation in (73) gives a linear ODE for π in terms of v

and g

dπ

dξ
= −g(

α− 1

α
v + (v − ξ)v′). (82)
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Integrating Equation (82) on the interval (1, 1 + ε) produces

π(ξ) = −α− 1

α

∫ ξ

1

g(τ)v(τ)dτ −
∫ ξ

1

g(τ)(v(τ)− τ)v′(τ)dτ. (83)

By combining Equations (76) and (83), π is determined as a function of g.

To simplify the resulting expression for π in terms of g, Equation (76) is

replaced by Equation (80) in Equation (83), which yields

π(ξ) ≈ −α− 1

α

∫ ξ

1

(
τg(τ)− 1

τκ

)
dτ +

∫ ξ

1

τ−κv′(τ)dτ. (84)

Using Equations (77) to (79), the first integral in Equation (84) is bounded

by an infinitesimal, so that Equation (84) becomes

π(ξ) ≈
∫ ξ

1

τ−κv′(τ)dτ . (85)

Integrating Equation (85) by parts then yields

π(ξ) ≈ ξ−κv(ξ)− v(1) + κ

∫ ξ

1

τ−κ−1v(τ)dτ . (86)

Note that the integral term in Equation (86) is bounded by an infinitesimal,
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evaluating Equation (86) at ξ = 1 and ξ = 1 + ε gives

π(1) ≈ 0 and π(1 + ε) ≈ 2

γ + 1
; (87)

so π is a nonstandard jump function. And since Equation (78) implies that

1

ξκ
≈ 1, (88)

on the interval (1, 1 + ε), Equation (86) then becomes

π(ξ) ≈ v(ξ). (89)

By combining Equations (63) to (65), (67) to (69), and Equation (89), it

follows that the predistributions of the Heaviside functions G, K, and L for

the density, velocity, and pressure jump conditions are in general distinct,

across an inviscid shock wave

G 6= K 6= L, (90)
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and

K ≈ L, (91)

for any infinitesimal interval (1, 1 + ε). Moreover, the jump functions v, π

and g are related by the integral equations

v(ξ) =
1

ξκg(ξ)

[
ξκ+1g(ξ)− 1− (κ + 1)

∫ ξ

1

τκg(τ)dτ

]
, (92)

and

π(ξ) = −α− 1

α

∫ ξ

1

g(τ)v(τ)dτ −
∫ ξ

1

g(τ)(v(τ)− τ)v′(τ)dτ. (93)

The nonstandard functions g, v, π ∈ ∗Lloc(R) are solutions of the bound-

ary value problem defined by Equations (73) and (74) and Equations (63)

through (66) in the sense that the infinitesimal equivalence relation ≈ re-

places equality = in the equations of motion.

4 Examples

To exhibit examples for the microstructures of inviscid, converging shock

waves, assume a density jump function g(ξ) ∈ ∗Lloc(R) defined via Equations
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(63) and (70) is given by

g(ξ) = 1 + [g](
ξ − 1

ε
)n, (94)

on the interval (1, 1 + ε), for n ≥ 1. Also, assume the ratio of specific heats

is given by γ = 7/5 for all examples.

Substituting Equation (94) into Equation (76) then yields

v(ξ) = ξ − 1

ξκg(ξ)
− κ + 1

ξκg(ξ)

∫ ξ

1

[
τκ + τκ[g](

τ − 1

ε
)n

]
dτ . (95)

Fixing n = 1 and performing the integration in Equation (95) produces

v(ξ) = ξ − 1

ξκg(ξ)
− κ + 1

ξκg(ξ)

(
(1− [g]

ε
)

ξκ+1

κ + 1
+

[g]

ε

ξκ+2

κ + 2

)

+
κ + 1

ξκg(ξ)

(
(1− [g]

ε
)

1

κ + 1
+

[g]

ε

1

κ + 2

)
. (96)

By using Equations (66), (71), and (78) with Equation (96), v satisfies the

boundary conditions and is a nonstandard jump function for velocity

v(1) ≈ 0 and v(1 + ε) ≈ 2

γ + 1
. (97)
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Figure 1: Density jump function specified form Equation (98) for n = 1.

The jump function for pressure may be computed directly by combining

Equations (94) and (96) with Equation (83) and integrating. However, the

resulting form for the pressure contains many terms; so to simplify the anal-

ysis, the pressure may be integrated numerically for the case of a converging

spherical shock wave, κ = 2.

Figure 1 shows the density jump function specified by Equation (94)

for n = 1. The shock wave jump interval (1, 1 + ε) is normalized to the

standard interval (0, 1) for all of the plots. The plots are generated with

small real values for ε and are used to convey the qualitative behavior of the
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Figure 2: Computed velocity jump function for the density jump function
shown in Figure 1: Circles ε = 0.1, Boxes ε = 0.01, Diamonds ε = 0.001,
Solid line limiting solution.

nonstandard shock wave microstructure.

Figure 2 shows the velocity jump function v computed from Equations

(94) and (76). Approximations of the velocity are computed using Equa-

tion (80) for the values of ε = 0.1, 0.01, 0.001 and illustrate the asymptotic

behavior the nonstandard jump functions. Moreover, as ε approaches an in-

finitesimal, the jump function for pressure approaches the jump function for

velocity: π ≈ v, and hence, K ≈ L. As a second example, the microstruc-

ture is computed numerically for the case of a converging cylindrical shock
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Figure 3: Density jump function specified form Equation (98) for n = 6.
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Figure 4: Computed velocity jump function for the density jump function
shown in Figure 3: limiting solution ε ∼ 0.
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wave, κ = 1. From experimental data on normal shock waves, the field vari-

ables have small variations near the upstream boundary of the shock layer,

Muntz and Harnett [26]. To simulate this behavior, Equation (94) is con-

sidered with n = 6, so that g′(1) is small. Figure 3 shows the density jump

function g on the normalized interval (0, 1). The velocity jump function is

then computed using Equation (76), and exhibited in Figure 4. Because the

asymptotic behavior of the nonstandard Heaviside function for pressure im-

plies that K ≈ L, it follows that Figure 4 also represents the pressure jump

function π.

The microstructure of converging shock waves depends on the geometrical

and physical parameters, α, κ, and γ. The similarity parameter α appears in

an integral term of Equation (83) for the pressure jump function π. Because

this term is bounded by an infinitesimal, α has little effect on the basic

features of the inviscid shock microstructure and is neglected in the examples.

Nonzero variation of the geometrical term κ, which specifies the coordinate

system (either 1 or 2), also has little effect on the gross microstructure.

However, κ was used to compute the examples and generates a small but

noticeable variation for larger values of ε. The ratio of specific heats γ is the

key physical parameter used to specify the macroscopic boundary conditions;
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and as such, γ fixes the gross features of the computed microstructure of

converging shock waves for a given density jump function.

5 Summary and Conclusions

This paper derived shock wave jump conditions for one-dimensional, converg-

ing shock waves in an inviscid, perfect gas using nonstandard analysis. Pre-

distributions of the Heaviside functions were introduced and used to model

the microstructure of the flow field across a shock wave governed by the clas-

sical conservation equations. For flow variables with their jumps defined on

the same infinitesimal interval, it was shown that the equations of motion

written in nonconservative form produced unambiguous relations between

the various nonstandard Heaviside functions. Because inviscid flow was as-

sumed, the analysis only produced the relations between the field variable

Heaviside functions.

The present work was motivated by the authors’ interest in understanding

how to add physical information to specify products of generalized functions

contained in differential equations modeling physical problems with well de-

fined regions of solution discontinuity. The main conclusions of the study are
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as follows:

1. Nonstandard analysis may be applied to identify predistributions of

the Heaviside function defined on infinitesimal intervals that reproduce

the standard jump function results from the theory of generalized func-

tions. The predistributions considered here are piecewise differentiable

elements of the function space ∗Lloc(R).

2. Nonstandard asymptotic arguments were used to simplify the deriva-

tion of the shock wave jump functions.

3. The relationships between the internal Heaviside functions for one di-

mensional, converging shock waves in an inviscid, perfect gas were de-

rived unambiguously from the equations of motion in nonconservative

form. Distinct nonstandard jump functions were obtained for the den-

sity, velocity, and pressure in converging shock waves.
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